Use of Decision Trees and Attributional Rules in Incremental Learning of an Intrusion Detection Model
نویسندگان
چکیده
Current intrusion detection systems are mostly based on typical data mining techniques. The growing prevalence of new network attacks represents a well-known problem which can impact the availability, confidentiality, and integrity of critical information for both individuals and enterprises. In this paper, we propose a Learnable Model for Anomaly Detection (LMAD), as an ensemble real-time intrusion detection model using incremental supervised machine learning techniques. Such techniques are utilized to detect new attacks. The proposed model is based on making use of two different machine learning techniques, namely, decision trees and attributional rules classifiers. These classifiers comprise an ensemble that provides bagging for decision making. Our experimental results showed that, the model automatically learns new rules from continuous network stream, such that it can efficiently discriminate between anomaly and normal connections, offering the advantage of being deployed on any environment. The model is intensively tested online and its evaluation showed promising results.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملEntropy Based Fuzzy Rule Weighting for Hierarchical Intrusion Detection
Predicting different behaviors in computer networks is the subject of many data mining researches. Providing a balanced Intrusion Detection System (IDS) that directly addresses the trade-off between the ability to detect new attack types and providing low false detection rate is a fundamental challenge. Many of the proposed methods perform well in one of the two aspects, and concentrate on a su...
متن کاملImproving Accuracy in Intrusion Detection Systems Using Classifier Ensemble and Clustering
Recently by developing the technology, the number of network-based servicesis increasing, and sensitive information of users is shared through the Internet.Accordingly, large-scale malicious attacks on computer networks could causesevere disruption to network services so cybersecurity turns to a major concern fornetworks. An intrusion detection system (IDS) could be cons...
متن کاملA hybridization of evolutionary fuzzy systems and ant Colony optimization for intrusion detection
A hybrid approach for intrusion detection in computer networks is presented in this paper. The proposed approach combines an evolutionary-based fuzzy system with an Ant Colony Optimization procedure to generate high-quality fuzzy-classification rules. We applied our hybrid learning approach to network security and validated it using the DARPA KDD-Cup99 benchmark data set. The results indicate t...
متن کاملLearning Attributional Ruletrees
Attributional ruletrees are shallow decision-tree-like structures whose leaves are sets of attributional rules or groups of classes. By using attributional ruletrees one is able in some cases to improve computational efficiency of inductive learning and understandability of generated hypotheses. A comparison of results of creating attributional ruletrees, attributional rules, and decision trees...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014